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Unexpected correspondence between noise-induced and master-slave complete synchronizatio
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A comparison between noise-induced synchronization and master-slave~Pecora-Carroll! synchronization is
investigated in this paper. We find an interesting correspondence between the effective driving variables of
these two kinds of synchronizations in three-dimensional chaotic systems, when the systems have nonlinear
terms in more than one equation. A study of the Lorenz model, the Hindmarsh-Rose neuron model, and the
Hastings-Powell foodweb model is given to support this claim. It is a somewhat surprising result since these
two kinds of synchronizations arise through different mechanisms. We also examine an exceptional case, where
the nonlinear term of the system appears in a single equation, as in the Pikovsky-Rabinovich circuit model, and
explain why the correspondence fails.
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I. INTRODUCTION

Recently, there has been a growing interest in no
induced synchronization@1–4#. Generally speaking, we ar
trained to think of noise as a disturbance that acts to des
the order of a system or enhances chaos in a system. H
ever, since the paper entitled‘‘noise-induced order’’@1# was
published, investigators have begun exploring other ac
roles of noise. Moderate noise may enhance the directed
tion of particles@2#. It was found that when the intensity of
common noise forcing exceeds a critical value, two coup
nonidentical oscillators are able to achieve phase synchr
zation@3# while two uncoupled identical systems are able
achieve complete synchronization~CS! @4,5#. This phenom-
enon is referred to as noise-induced synchronization.
other well-known method of synchronization is the mast
slave method presented by Pecora and Carroll in 1990@6,7#.
Two chaotic systems can be synchronized if~i! some dy-
namical variables~driving variables! are used to link two
systems and~ii ! subsystems, excluding the driving variable
possess only negative Lyapunov exponents~LE! or more ex-
actly, negative maximum conditional Lyapunov expone
~MCLE! @6,7# of subsystems. Though MCLE is a necessa
condition but not sufficient in coupling case@8#, MCLE is
valid in master-slave driving scheme@9#. According to this
method, given a chaotic system, whether or not CS can
realized depends on the choice of driving variables,
equivalently, the choice of subsystems. Generally, mas
slave synchronization can always be realized by prop
choosing driving variables@9#. Sometimes there is more tha
one effective driving variable, and the variables will ha
different effectiveness. Usually the degree of effectivenes
measured in terms of the degree of stability of the result
CS and/or the average time spent by the master and s
systems in reaching CS~below certain tolerance! from ran-
dom chosen initial states. The effectiveness can be gauge
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MCLE of the subsystem. A negative MCLE corresponds
successful CS in the master-slave method and a larger a
lute value corresponds to higher effectiveness. Howe
Gaussian white noise-induced CS cannot be realized in s
systems such as Ro¨ssler oscillators@3#. This is a major dif-
ference between noise-induced CS and the master-s
scheme, where for the latter there is always at least one
fective variable~to our knowledge, there must be one effe
tive variable or a proper active-passive decomposition@9#!.

In this paper we compare noise-induced CS with mas
slave CS and find an unexpected correspondence betw
effective variables of these two kinds of CSs. In the case
master-slave scenario the onset of synchronization is de
mined by the conditional stability of the unperturbed attra
tor in the original system. While in the case of noise-induc
CS, as clearly illustrated in many examples@3,4#, the onset
of synchronization often depends on how much and in w
way the external noise perturbs the original attractor. O
may expect generally that the latter should not be conne
with the behavior of master-slave systems. Usually, no
induced CS requires that the noise intensity reaches or
ceeds the size of the original attractor of the system@4#. In
this paper we use three different models to show there re
is a correspondence. The effective variable in master-s
CS proves to be the effective variable in noise-induced C
This is true provided that the nonlinear terms of the mo
appear in more than one equation of the original system
other words, the nonlinearity cannot be eliminated simply
erasing one equation. However, if this is not the case
correspondence between master-slave and noise-ind
synchronizations fails.

II. LORENZ MODEL

First, we study the Lorenz system@10#, with the following
equations of motion:

ẋ5s~y2x!,
©2003 The American Physical Society02-1
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ẏ52xz1rx2y, ~1!

ż5xy2bz,

where we choose the parameters in the chaotic regimes
510, b58/3, andr 528. We construct the response syste
by letting the slave~response! system be a duplicate of a pa
of the vector fields for (x,y), (y,z), or (z,x). We examine
all possible master-slave systems and setx,y,z as the driving
variables, respectively; as is usual, the slave subsystem
replicas of (y,z), (x,z), (x,y) correspondingly. The LEs an
subsystem’s CLEs for the Lorenz model are given in
following matrix which we term the LE-CLE matrix. The
first row of the matrix gives the LE of the original system
the second to fourth rows contain the subsystem’s CLEs
x→(y,z), y→(x,z), andz→(x,y), respectively:

F 1.3071 0.0000 221.0237

0.0000 22.4176 22.5470

24.7214 0.0000 213.6642

20.2264 216.0787 0.0000

G . ~2!

As there is a positive LE (LE51.3701) in the first row, it
is clear that the original system is chaotic. All Lyapun
exponents in this paper are base-2. Note that for a flow
time continuous autonomous system, one LE must be z
@11,12#, as seen in the first row. Each of the remaining ro
~i.e., rows 2–4! contains the CLEs of the respective su
system, and the MCLEs are found by seeking the larg
nonzero element in each row. The absolute value of
MCLE ~assuming the MCLE is negative! characterizes the
effectiveness of CS state.

As the most negative of all MCLEs is found in the thi
row y→(x,z) (MCLE524.7214), y is the most effective
variable for master-slave CS; this can be shown by calcu
ing the average transient time from randomly chosen ini
states to synchronization state.

We want to emphasize here the correspondence, whey
for the Lorenz system is also known to be the most effec
driving variable for noise-induced CS@3#. It is thus the most
effective driving variable for both types of synchronization
The second most negative MCLE is found in row
making x the next best effective variable in both kinds
synchronizations@3,4#.

III. HINDMARSH-ROSE MODEL

Secondly, we consider the Hindmarsh-Rose~HR! @13#
neuron model:

ẋ5y2ax31bx22z1I ,

ẏ5c2dx22y, ~3!

ż5r @S~x2x!2,z#,
03720
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where a51.0,b53.0,c51.0,d55.0,S54.0,r 50.006,x
521.56, andI 53.0. The LE- CLE matrix of the HR neuron
model is

F 0.0153 0.0000 212.6777

0.0000 20.0089 21.3847

20.0793 0.0000 211.0695

0.0452 212.6820 0.0000

G . ~4!

All matrix entries in the second rowx→(y,z) and the
third row y→(x,z) are non-positive. Of the nonzero entrie
the third row contains the most negative (20.0793), which
is the most negative MCLE. Therefore,y is the most effec-
tive variable in master-slave CS. Again, this corresponds
noise-induced CS wherey is a quite effective variable@4#.
Actually the difference between MCLEs of variablesx andy
is small, this corresponds to the similarity between their cr
cal noise intensity points for synchronization in the mean
that both are comparable to the sizes of the attractor. Th
different from variablex of Lorenz, which needs a very
large, compared to the size of the attractor, critical no
intensity for synchronization. The HR model is similar to th
Lorenz model in the sense that both have more than
effective variable in two kinds of synchronizations.

In contrast, the following Hastings-Powell foodwe
model is different because it has only one effective varia
for noise-induced synchronization.

IV. HASTINGS-POWELL MODEL

We now examine common noise-induced CS in two u
coupled multitrophic chaotic ecological systems, i.e.,
Hastings-Powell~1991! @14,15# tritrophic model. The model
is as follows:

ẋ5rx~12Kx!2 f 1~x!y,

ẏ52d1y2 f 2~y!z1 f 1~x!y 1Dj~ t !, ~5!

ż52d2z1 f 2~y!z,

wheref 15a1x/(11b1x) and f 25a2y/(11b2y). The model
dynamics is chaotic for the standard parameters~Hastings-
Powell 1991! K5r 51, a155, a250.1, b153, b252, d1
50.4, andd250.01. The noise termj(t) is Gaussian with
^j(t)j(t2t)&5d(t), andD denotes the noise intensity. Th
LE-CLE matrix of the Hasting-Powell foodweb model is

F 0.0158 0.0000 20.9837

0.0000 0.0973 0.0944

20.0003 0.0000 21.1605

0.0457 21.0142 0.0000

G . ~6!

The third line fory→(x,z) is actually the only line with a
zero MCLE~20.0003!. Soy is a neutral variable for master
slave CS. This is consistent with noise-induced CS, whey
is the only effective variable as shown in Fig. 1,@16#. Here
we plot the average synchronization erroruX12X2u against
2-2
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the noise intensityD, where noise acts onx ~thin line!, y
~bold line!, andz ~dash line!, respectively. The critical poin
for y can be seen atDc50.05, below which there is no CS
When D.Dc , two uncoupled identical models driven b
common noise are completely synchronized.

The above three models illustrate a correspondence
tween noise-induced and master-slave synchronizations.
is surprising, because the mechanism of these two kind
synchronizations are quite different. For master-slave CS,
CLE is a known useful exponent for determining the effe
tiveness of synchronization. However, for noise-induced C
no such criterion has been found in the theory. The inter
ing correspondence we find here suggests a criterion fo
agnosing noise-induced CS. Nevertheless, the corres
dence is not completely general as we proceed to s
below.

V. PIKOVSKY-RABINOVICH MODEL

An inspection of the three models discussed above rev
that each has nonlinear terms in more than one equation
now consider a different case when the nonlinear term
pears in a single equation. In this case nonlinearity can
eliminated simply by erasing the equation including the n
linear term. In master-slave scheme, if we choose the v
able, whose equation contains nonlinear term, as the dri
variable, when we calculate MCLE of the subsystem, it
obvious that the Jacobian matrix of the subsystem is a c
stant matrix, since the subsystem contains no nonlinear t
Master-slave CS cannot be realized when the subsystem
positive MCLE, actually in this case MCLE can be give
analytically since it has constant Jacobian matrix, MCLE
based on Jacobian matrix@11,12#.

Now let us consider the Pikovsky-Rabinovich~PR! @17#
circuit model. The equations are as follows:

FIG. 1. The average synchronization erroruX12X2u vs noise
intensityD while noise acting onx ~thin line!, y ~bold line!, andz
~dash line!, respectively. The critical point for CS while noise actin
on y can be seen atDc50.05, above which the error vanishe
Noise-induced synchronization cannot be realized by noise ac
on eitherx or y.
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ẋ5y2bz,

ẏ52x12gy1az, ~7!

ż5~x2z31z!/m,

whereb50.66,a50.165,g50.201, andm50.047. In con-
trast to the cases mentioned above, the PR circuit exh
different behaviors even though it has a two-wing struct
similar to the Lorenz system@17#. The LE-CLE matrix of the
system is

F 0.1481 0.0000 269.1866

0.0000 0.5686 269.8410

20.4535 0.0000 269.2213

0.2147 0.2147 0.0000

G . ~8!

Herey→(x,z) has the most negative MCLE in the thir
row, makingy the most effective variable in master-slave C
Surprisingly, however, it can be shown thatz is the only
effective variable for generating noise-induced CS@4#. This
interesting difference can be understood from the equat
of motion, Eq.~7!. It can be seen that the only nonlinear ter
appears in the equation ofż, thus the Jacobian matrix of th
system includes single variable ofz and at the same time
only in the third row. The mechanism of noise-induced CS
actually changing the distribution ofz values on the dis-
turbed attractor to make the maximum LE negative@3,4#. So,
it is not strange thatz is the most effective in noise-induce
CS. However, on the other hand, the calculation of CLE
subsystem (x,y), i.e., assumingz as driving variable in
master-slave CS, is equivalent to eliminating the third line
Jacobian matrix, unfortunately the rest part of the Jacob
matrix is constant and yields positive maximum CLE, soz
→(x,y) scheme in master-slave CS fails and should
avoided, while noise-induced CS onz can be realized effec
tively. Furthermore, this may be a reason thaty is effective in
master-slave CS rather than in noise-induced CS.y is the
overlapping variable of the two unstable subsystems (y,z)
and (x,y). Very weak noise applied ony will make the sys-
tem blow out. There must be some overlapping variab
when there is more than one unstable subsystem in a th
dimensional system. For dimension greater than three,
four-dimensional kinetic rate neural spike model@18#, the
effective variables in these two kinds of CSs are revers
This may be due to more than one unstable subsyste
Though in this paper only three-dimensional systems
considered, in higher-dimensional case, an analysis on
overlapping variables of the unstable subsystems may
helpful.

VI. DISCUSSION AND CONCLUSION

In this paper we have compared two important synch
nizations, noise-induced CS and master-slave CS. Our
merical results show an interesting correspondence betw
effective variables in these two kinds of CSs in chaotic s
tems~described by three equations! as long as there are non
linear terms in more than one equation. However, for mod
in which the nonlinear term appears in only a single eq

g

2-3
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tion, this correspondence fails. The mechanism can be
ristically understood. The latter case has a virtue, where
effective variable for noise-induced synchronization is ea
determined. The variable that is effective in noise-induc
CS may not be effective in master-slave CS. This is beca
that when this variable is used as a driving variable
master-slave scheme, a replica of the rest subsystem
have a constant Jacobian matrix and yield positive MCL
On the other hand, the effective variable in master-slave
may not be effective in noise-induced CS in this case. T
reason is that the variable is an overlapping variable of
unstable subsystems in the meaning of master-slave sch
which is more unstable.

In this Brief Report we link noise-induced CS to the we
known master-slave CS. Since chaos synchronization, e
cially noise-induced CS, has potential important applicatio
ys
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in circuit and biological~neuron and ecology! fields, we
hope our work can inspire relative researches in these fie
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